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A new, frequency modulation mechanism for zonal flow pattern formation is presented. The model
predicts the probability distribution function of the flow strength as well as the evolution of the
characteristic spatial scale. Magnetic toroidicity-induced global phase dynamics is shown to determine the
spatial structure of the flow. A key result is the observation that global phase patterning can lead to zonal
flow formation in the absence of turbulence inhomogeneity.

DOI: 10.1103/PhysRevLett.117.125002

How coherent structures emerge from turbulence is a
central question of the physics of self-organization.
Examples of such structure formation phenomena include
magnetic dynamo, vortex formation in shear layers, and
zonal flow formation in rotating or 2D fluids and magnetized
plasmas [1–4]. Zonal flow (ZF) dynamics is the topic of this
Letter and is relevant to planetary atmosphere banding, jet
stream formation, and improved confinement in magnetized
plasmas. The emergence of zonal flows in wave turbulence is
frequently constrained by a type of adiabatic invariant, such
as wave action. Adiabatic invariance follows from phase
symmetry and scale separation [5]. Here, the “phase” refers
to the global phase of the fluctuations. Specifically, an
eikonal representation of each mode can be written as
ϕðr; tÞ ¼ jϕðr; tÞjeiSðr;tÞ with the eikonal phase S ¼ S̄þ ~s
composed of a slow, mesoscale piece S̄—the global phase
and a fast, microscale piece ~s. For a homogeneous intensity
(∇jϕj ¼ 0), the spatial variation of ϕ is also composed of a
global piece (∇S̄) and a local piece (∇~s). The evolution of
the adiabatic invariant follows a global phase “trajectory”
that extremizes the action of the underlying system [5].
Therefore, the space-time evolution of the global phase
profile is central to structure formation and self-organization.
Global phase dynamics has generally been overlooked in
theories of zonal flow formation. In this work, we show that
the geometry of the global phase which emerges from phase
turbulence is intrinsic to broken symmetry in the turbulence,
and hence, is central to spatial structure formation. As a
concrete example, important for both theory and application,
we study global phase dynamics of ZF generation from drift
wave turbulence in a toroidally confined plasma [6–8]. This
study has as its principle outcomes the formulation of the
theory of frequency modulational instability and global
phase gradient shocks, along with the prediction of zonal
flow formation in homogeneous turbulence (∇jϕj2 ¼ 0). A
significant extension of the widely utilized predator-prey
model of ZF dynamics is also proposed.
ZFs play an essential role in regulating the level of

turbulence and improving the energy confinement of mag-
netized plasmas. Benefiting from progress in the state-of-art

flux driven gyrokinetic simulations, a more detailed spatial
structure (i.e., quasi-“staircase” pattern) of the zonal flow in
toroidal plasmas has been uncovered [9,10]. The ZF is driven
by Reynolds’ force. To produce a finite Reynolds’ force, an
inhomogeneous momentum flux is necessary. The most
frequently invokedmechanism forZFgeneration isamplitude
modulation instability, where inhomogeneity of the momen-
tum flux is induced by an initial modulation of the turbulence
intensity by a “seed” ZF [11,12]. In this scenario, the ZF
generated takes the general form, hViðx; tÞ ¼ hVi0ðxÞeγZFt,
where hVi0 is the seed ZF and γZF is the growth rate of the ZF.
As is shown, the generated ZF has a memory of the structure
of the seed; i.e., the spatial structure of the ZF is not entirely a
derived quantity. By examining global phase dynamics, we
show that the curvature of the global phase profile induces a
contribution to theReynolds’ force, evenwhen the turbulence
intensity is homogeneous. ZF drive by global phase curvature
is analogous to frequency modulation [13], for which the
phase patterning induces a space-dependent global frequency.
We also show that toroidicity-induced spatial phase coupling
of the drift waves induces the formation of a global phase
gradient “shock”—i.e., a layer with strong phase curvature.
The shock layer then drives a ZF shear layer without a
turbulence intensity gradient. The spatial structure and dis-
tribution of the ZF are determined by the corresponding
properties of the phase shocks. This newpicture also uncovers
another role of toroidicity in plasma transport. In contrast to
the common idea that magnetic toroidicity is unfavorable for
confinement since it leads to ballooning [14], we show that
toroidicity can, in fact, trigger phase gradient shocks and thus
ZF formation. Incorporating the global phase evolution, we
arrive at a reaction-diffusion system of coupled equations for
ZF, turbulence intensity, andglobal phase. Theglobal phase is
directly related to the crossphase of themomentumflux, soby
inspecting how the cross phase evolves [15], one can follow
the dynamics of the global phase and vice versa.
We consider ZF evolution within a simple fluid picture

∂
∂t hVi ¼ −

∂
∂x hvxvyi − γdhVi; ð1Þ
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where hVi is the poloidally averaged zonal flow velocity,
hvxvyi is the Reynolds’ stress (x–radial direction,
y-poloidal direction) and γd is the ZF friction coefficient.
v ¼ −∇ϕ × ẑ is the E × B drift velocity with ϕ the
velocity stream function and proportional to the electro-
static potential. For simplicity, we take the toroidal mode
number n as fixed. After Fourier transformation in the
poloidal direction, each poloidal mode can be written as
ϕm ¼ jϕmjeiSmþimθ with Sm ¼ Smðx; tÞ the eikonal phase of
mode m. In a toroidally confined plasmas, the amplitude of
each poloidal harmonic mode peaks at or near its associated
rational surface and is coupled with its neighbors via the
toroidicity of the magnetic field. Thus, a quasiperiodic
“chain” (i.e., quasilattice) is formed, with each m corre-
sponding to the radial position of a particular resonant
surface (Fig. 1). A collective global oscillation can emerge
due to couplings of the local harmonics [16]. To explore the
global phase dynamics in this lattice, the global phase
function (S̄) is obtained by taking the continuum limit of
the phase lattice (Fig. 1), so one has Smðx; tÞ ¼ S̄þ ~s. ~s is
the local phase, associated with each drift wave and
∂x ~s ¼ kx is the local radial wave number of the drift wave.
Using the eikonal representation, ϕm can be written as
ϕm ¼ jϕmjeiS̄þi~sþimθ. The Reynolds’ stress at the resonance
surface xm then follows as

hvxvyi ¼ 2
X

m0

k0yk0xIðm0Þ þ 2
X

m0

k0yIðm0Þ ∂
∂x S̄; ð2Þ

where Iðm0Þ≡ jϕm0 j2=2 is the intensity of the turbulence.
ky is the poloidal wave number and is set by fast, small
scales. In the continuum limit, ky can be understood as a
continuous function of the radial position. ∂xS̄ can then be
moved out of the summation, since ∂xS̄≃ ∂xS̄jx¼xm . For the
first term to contribute, inhomogeneity of the turbulence
intensity spectrum is required. In amplitude modulational
stability, it is the seed ZF shear that modulates the
turbulence intensity, inducing long range coherence of
the turbulence, and hence, inhomogeneity of the
Reynolds’ stress. Note that since, after a reflection
m → −m, ky and S̄ flip sign simultaneously, the second

term in Eq. (2) is nonzero. So, we see that the global phase
gradient can induce a finite cross correlation between vx
and vy and hence, a finite Reynolds’ force if the global
phase curvature is nonzero. Note that this is the case even if
the turbulence is homogeneous. In other words, global
phase curvature induces a frequency modulation mecha-
nism, which is fundamentally different from the familiar
amplitude modulation. One should note that Eq. (2) gives a
general result for how the global phase pattern influences
turbulent momentum transport. Using the spiky distribution
and quasitranslation invariance (i.e., kx ≃ k0x) approxima-
tions at rational surfaces xm, we need only consider
contributions from the locally resonant mode m, i.e.,P

m0 …≃P
m0 δmm0…. Thus, Eq. (1) takes the form

∂
∂t hVi≃ 2kykx

∂
∂x I þ 2ky

∂
∂x I

∂
∂x S̄þ 2kyI

∂2

∂x2 S̄ − γdhVi:

ð3Þ

Note: the summation of the first three terms on the rhs is the
total Reynolds’ force and can be written in a conservative
form, ∂xð2kykxI þ 2kyI∂xS̄Þ. The first term is the ZF
acceleration driven by inhomogeneity of the turbulence
intensity, which is the most familiar and frequently involved
mechanism. The second term is due to the combined effects
of turbulence intensity inhomogeneity and the global phase
gradient. The third term is ZF acceleration by global phase
curvature. This contributes even when the turbulence inten-
sity is homogeneous; i.e., the global phase curvature itself
can still induce a finite Reynolds’ force and drive a ZF from
zero. This new ZF drive mechanism is the most significant
discovery of this Letter.
Focusing on this new mechanism, we consider ZF

evolution when we assume the turbulence intensity to be
homogeneous. The space-time structure of the turbulence
intensity and its relation to global phase patterning are
addressed later. ZF evolution driven by the global phase
curvature follows as

∂
∂t hVi ¼ 2kyI

∂2

∂x2 S̄ − γdhVi: ð4Þ

To understand the mechanism of the formation of the
global phase curvature, one needs to describe global phase
evolution. A general way to obtain the global phase
equation is by the eikonal equation

∂
∂t S ¼ −ω − k · ~v; ð5Þ

where ω ¼ ωk þ 2ω̂De þ kyhVi is the total linear fre-
quency, including its eigenfrequency (ωk), magnetic drift
frequency (2ω̂De), and the Doppler shift by the ZF. k · ~v is
the stochastic Doppler shift by the underlying turbulence.
With k ¼ ∇~s, k · ~v can be rewritten as k · ~v ¼ ∇ · Γs,

FIG. 1. Red: phase lattice; dashed black: continuous limit of the
phase lattice.
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where Γs ≡ v~s is the turbulent phase flux. The magnetic
drift frequency 2ω̂De is a linear operator, and 2ω̂Deϕm¼
vd ·∇ϕm¼VD½kyðϕmþ1þϕm−1Þ− ikxðϕmþ1−ϕm−1Þ& with
vd ·∇¼VDðky cosθþkx sinθÞ the magnetic drift frequency
and VD≡csρs=R [17]. In the continuum limit, and employ-
ing the strong coupling approximation (jkxΔj≪1), one
has ϕm'1 ≃ ½1' iΔ∂xS − 1

2 ðΔ∂xSÞ2 þ ( ( (&ϕm with Δ ¼
1=ðnq0Þ the distance between rational surfaces at fixed n
(q0—gradient of the safety factor). The eigenvalue of 2ω̂De
follows as

2ω̂Deϕm ≃
!
2kyVD − kyVDΔ2

"∂S
∂x

#
2

þ 2kxVDΔ
∂
∂x S

$
ϕm:

ð6Þ

Eliminating the local, fast variation (i.e., ∂t ~s≃
−ωk − 2kyVD) in Eq. (5), the global phase evolution
follows as

∂
∂tS̄≃−kyhVi−2kxVDΔ

∂
∂xS̄þkyVDΔ2

"∂S̄
∂x

#
2

þDs
∂2

∂x2 S̄;

ð7Þ

where, for closure, hΓsi is approximated by a Fickian flux
with diffusion coefficient Ds,

hΓsi ¼ −Ds
∂
∂x S̄: ð8Þ

Here,Ds ∝ l2cδω with lc correlation length of the turbulence
and δω the turbulence decorrelation rate [18]. The dynamics
of the global phase is a consequence of four processes:
frequency detuningbyZF [the first termon the rhs ofEq. (7)],
linear propagation (the second term), quadratic self-coupling
(the third term), and turbulent diffusion (the fourth term). The
frequency detuning strengthens the inhomogeneity of the
phase profile. The linear propagation term can induce
wavelike propagation of the global phase profile, and the
propagating velocity is 2kxVDΔ. In fact, by moving to a
frame with radial velocity of 2kxVDΔ, the second term in
Eq. (7) can always be eliminated. The self-coupling term
tends to induce nonlinear patterns in the phase profile and
hence, strengthens the phase curvature [19]. The turbulent
diffusion term tends to flatten the phase profile, so driving it
to saturation. Since the global phase always has a degree of
gauge freedom, an equivalent quantity but one more symp-
tomatic of turbulent mixing, is the global phase gradient.
After applying a spatial derivative to both sides of Eq. (7), the
evolution of the global phase gradient follows as

∂
∂t S̄

0 ¼ −kyhVi0 − 2kxVDΔ
∂
∂x S̄

0 þ 2kxVDΔ2S̄0
∂
∂x S̄

0

þDs
∂2

∂x2 S̄
0; ð9Þ

where S̄0 ≡ ∂xS̄. The first term on the rhs reflects the
feedback effect of ZF shear on global phase gradient profile.
Note that Eq. (9) is an inhomogeneous Burgers equation, and
its most obvious property is the existence of a shock solution
induced by the convective nonlinearity, S̄0∂xS̄0 (Fig. 2).
In the initial stage, since the amplitude of the ZF is weak,

we first ignore the feedback effect. In the shock layer
region, the gradient of S̄0 (i.e., phase curvature) is large, so
the ZF is strongly driven. In other words, the phase shock
layer corresponds to a nascent ZF layer, and the width of
the shock layer corresponds to the seed for the ZF shear
length, LZF. The width of the shock layer is determined by
the balance of the “overturning” effect, measured by the
overturning time jδS̄0j=LZF (δS̄0 is the jump in S̄0 over
the shock layer), and the diffusive effect (measured by the
diffusion time Ds=L2

ZF), i.e.,

2kyVDΔ2jδS̄0j=LZF ≃Ds=L2
ZF; ð10Þ

where the jump of S̄0 over the shock layer δS̄0 is negative.
We then obtain the scaling of the width of the shock layer

LZF ≃ Ds

2kyVDΔ2jδS̄0j
: ð11Þ

LZF can be further estimated by using the approximations:
Ds ≃ ρscsρs=a for gyro-Bohm diffusion and jδS̄0j≃ 1=Δ.
Then, it follows as LZF ≃ ðq0=qÞRρs ≃ ðR=aÞρs ¼
ðR=aÞðlmeso=aÞlmeso (l2meso ≡ aρs i.e., typical mesoscale),
which is within the range observed in gyrokinetic simu-
lations [9]. One can also see that the ZF shear (hVi0)
deduced from Fig. 2 exhibits a strong localized dipole
structure, as was observed in [10].
The probability distribution function (PDF) of δS̄0

depends on the “force” (i.e., the noise source). The noise
originates from mode-mode beating processes [20].
Incorporating a noisy forcing term Fðx; tÞ, Eq. (9) becomes

FIG. 2. Top figure: global phase gradient shock induced by
magnetic toroidicity; bottom figure: staircaselike ZF bands
induced by the shocks.
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∂
∂t S̄

0 ¼ 2kyVDΔ2S̄0
∂
∂X S̄0 þDs

∂2

∂X2
S̄0 þ FðX; tÞ; ð12Þ

where X ≡ x − 2kxVDΔt. The phase gradient-Burgers
turbulence is an ensemble of “ramps’” (phase gradient
difference δS̄0 > 0) and shocks (δS̄0 < 0) (Fig. 2). In the
ramp region, the profile of S̄0 is smooth, so that the phase
curvature is small there, and the ZF is not driven
effectively. Thus, the ramps correspond to regions of fast
transport. The shock regions are the site of ZF drive, and
so correspond to local transport barriers. The alternating
sequence of ramps and shocks resembles the staircase
structure discovered in recent years, with the ramp
corresponding to “step” and shock corresponding to the
“jump” between steps (Fig. 2).
By understanding the phase pattern, the spatial distri-

bution of turbulent transport can be extracted. Assuming
Fðx; tÞ to be noise which is white in time,
hFðx; tÞFðx0; t0Þi ∝ ðx − x0Þξδðt − t0Þ with ξ an index
reflecting spatial inhomogeneity of the noise, we see that
the PDF of the ramps follows an exponential scaling,
PðδS̄0 > 0Þ ∼ e−δS̄

3=δS̄3c [21], with δSc the characteristic
value of the ramps. It is well-known that the PDF of
shocks has a power-law tail, as a consequence of the
intermittency of the shock structures [22]. For homo-
geneous noise (i.e., ξ ¼ 0), one has PðδS̄0 < 0Þ ∼ jδS̄0j−4
[22]. With Eq. (10), one thus finds scaling of the PDF of the
ZF width (or the width of the shock layer) to be

PðLZFÞ ∼ L4
ZF: ð13Þ

This power law scaling indicates the phase curvature
driven ZF tends to concentrate at large scales. For
inhomogeneous noise (i.e., ξ ≠ 0 the external force is
scale dependent), the index in Eq. (13) will be smaller
than 4, so, the shock layers tend to be sharper. The reason
is that the external force will couple to the “inertial” range
of the global phase gradient turbulence, so that it will
inhibit formation of large shocks. The ZF generation and
distribution is due to a roughening of the global phase
profile [16]. The more roughening that occurs, the more
curved the global phase profile will be, and so the ZF is
more effectively driven at smaller scale.
As the amplitude of the ZF develops to a certain value,

one must consider its feedback on phase gradient evolution.
An immediate observation is that the ZF shear tends to
detune the phase gradient growth [i.e., via the first term in
Eq. (9)]. This tends to enlarge the phase difference between
neighbors in phase lattice, and hence, enhances the rough-
ness of the phase profile. In other words, the ZF shear has a
positive feedback effect on the phase evolution. This
feedback effect is most prominent near the “shoulder” of
the phase gradient shock, where the ZF shearing rate is the
strongest, and the overturning due to the nonlinear con-
vection term is relatively weak. Thus, the ZF shear can be

written as hVi0 ≃ ð−∂tS̄0 þDs∂2
XS̄

0Þ=ky and substituting
into Eq. (4) yields

∂2

∂t2 S̄
0 −

"
Ds

∂2

∂X2
− γd

# ∂
∂t S̄

0 ¼ ðDsγd − 2k2yIÞ
∂2

∂X2
S̄0:

ð14Þ

After a Fourier transformation (∂t → γK, ∂x → iK), one
has

γK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDsK2 − γdÞ2 þ 8k2yIK2

q
− ðDsK2 þ γdÞ

2
: ð15Þ

Existence of a positive growth rate requires

2k2yI > Dsγd; ð16Þ

i.e., distortion effect by ZF shear (measured by 2k2yIK2)
should exceed flattening effects by diffusion (DsK2) and
damping by ZF friction (γd).
Due to the conservation of energy between ZF and

turbulence, the appearance of ZF structures inevitably
changes the spatial structure of the turbulence intensity,
so that the initial assumption of homogeneity of I ulti-
mately fails. One must then consider the dynamical
evolution of the turbulence intensity. The general form
of the turbulence intensity evolution equation is

∂
∂t I ¼ γlI þ 2kyIS̄0hVi0 þ

∂
∂x

"
DTI

∂
∂x I

#
− γnlI2; ð17Þ

the first term is the linear driving term. The second term
comes from energy conservation between ZF and the
turbulence. The third term accounts for turbulence spread-
ing [23] with DTI the nonlinear turbulent intensity dif-
fusion coefficient. The last term is a local turbulence
dissipation or cascade term with γnl the nonlinear dissipa-
tion coefficient. The specific forms of DT & γnl depend on
the detailed properties of the underlying turbulence. As the
details of these coefficients are the subject of this Letter, we
take DT&γnl as given parameters. A positive linear growth
is equivalent to the existence of a finite free energy flux
(here, the thermal energy flux), i.e., γl ∝ hvx ~Pi with ~P the
thermal energy (pressure) fluctuation. Since hvx ~Pi ∝ cos θc
(θc the cross phase between vx and ~P), the evolution of the
turbulence intensity is necessarily coupled to the cross
phase dynamics. Depending on the strength of ZF shearing,
θc falls into two different states. For weak ZF shearing, θc is
in a phase locked state, so that the turbulence is contin-
uously pumped and the ZF is effectively driven by the
phase curvature, as the phase curvature induced Reynolds’
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force is also proportional to the turbulence intensity. As ZF
shear increases, the ZF will extract energy from the drift
wave turbulence, and also upshift the cross phase, thus
reducing the turbulence pumping rate [24]. If the ZF shear
exceeds a certain threshold, θc will enter and remain in a
phase slip state, so the turbulence intensity will oscillate
periodically. Then both the ZF and the global phase profile
will exhibit quasiperiodic oscillation. Thus, due to the
coupling to cross phase evolution, the dynamics of the
ZF-global phase-turbulence intensity system is consider-
ably enriched. Equations (3), (9), and (17) constitute the
reaction-diffusion system, where global phase steepening,
flattening, ZF generation, and turbulence spreading are
incorporated within a unified framework.
In summary, we show that any minimal mean field

theory of drift wave-ZF turbulence must include three
players (not two): the ZF field, the turbulence intensity, and
the global phase. By a new frequency modulation mecha-
nism, the global phase curvature drives a ZF shear layer,
even when the turbulence is homogeneous. Observe this
mechanism explains the formation of robust ZF structure in
core plasmas—in particular, in regimes of modest mean
E × B shear and weak turbulence inhomogeneity. A
numerical test of this ZF formation mechanism is most
viable. In a scenario with homogeneous turbulence and
zero initial ZF field, by extracting the profile information of
global phase and ZFs, the dynamical relation [Eqs. (4) and
(7)] between the global phase and the ZFs can be extracted
directly. In the current theory, the magnetic toroidicity
induced linear mode coupling plays an essential role in
inducing the global phase-gradient shock layer. It appears
as a magnetic drift frequency (2ω̂de) in the eikonal
equation, Eq. (5). The turbulent diffusion effect is included,
so that a steady shock layer can form. An important further
study is whether nonlinear mode coupling can induce
global phase pattern and then drive flow? This question
is equivalent to studying whether the nonlinear frequency
shift [25], which can be added to the eikonal equation, can
coherently couple the phases at different positions. The
answer to this question depends on the detailed form of the
nonlinear interaction and is definitely an important topic to
pursue in the future.
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